MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.945: LARGE SCALE SYMBOLIC SYSTEMS

FINAL REPORT

Debugging, Better

Kenneth Friedman
Blake Elias
Jared Pochtar

ksf@mit, eliassb@mit.edu, jpochtar@college.harvard.edu

Professor Gerald Jay Sussman
Manushage Muco

May 15, 2017

6.945: LARGE SCALE SYMBOLIC SYSTEMS, MIT, SPRING 2017

1

Abstract—To more easily write large scale, robust systems, it is necessary to improve our debugging tools and methods. In this project, we
explore new methods of debugging Scheme. By implementing a fully working programming environment (also known as an integrated development
environment, or IDE), we demonstrate major improvements to current debugging methods. The IDE contains three major components: a highlight
to evaluate system, a way to manipulate values by dragging, and expression investigation.

Here, we first explain the motivation beind our IDE. Then, we describe our environment and how it communicates with Scheme. Next, we
describe the major debugging components in detail, and describe their implementation. Finally, we summerize our findings and describe future

possibilities.

The app is fully open source with an MIT License. The app and the code are available here: github.com/kennethshawfriedman/Schemer,

1 MOTIVATION

"Programs must be written for people to read, and
only incidentally for machines to execute” -Abelson and
Sussman, SCIP

"Debugging is twice as hard as writing the code in
the first place.” -Brian W. Kernighan

Kernighan wrote those words in 1978, and they are
still true today. Our vision for this project is introduce
a brand new Scheme programming environment that
makes major improvemnts to debugging. While this is in a
prototype state, we have a fully working implementation
that can already help you better understand your code.

To take steps towards our vision, we implemented a Scheme
IDE with debugging tools built into the environment. We
designed our environment with specific design goals
in mind. We also have three major subsystems to our
IDE. Here, we will describe our design goals and major
subsystems in brief.

1.1 Design Goals

Our main goal is to demonstrate that new ideas and tech-
niques in debugging can improve the overall programming
experience. In terms of design goals, we followed the major
guidelines of the project. Our “mix and match pieces”
are the distinct debugging tools, which can be swapped
and replaced without harm to the system. Our system is
also robust, and incremental changes to the tools will only
require incremental changes to the code. Each major system
subsystem can be swapped for a different implementation.
Finally, the project is well documented, and can be easily
run and modified, without the need for dependencies.

1.2 Subsystems

Each subsystem in our IDE (which has the working name:
Schemer) is a debugging feature. We have three main
debugging features.

First, our system includes “Highlight to Preview”. This
introduces a new concept of a preview-execution. You can
temporarily see the output of your code (by selecting a
section of text), and then instantly “undo” the computation
(by deselecting that text).

Second, our system includes draggable manipulation.
This alows you to easily see the output of a procedure
over a range of numerical inputs. Simply hover over a

Schemer

(+32)
(car (list 'a 'b 'c 'd 'e))

(define (testr x y)
(/ (+ xy)2))

(testr 10 20)
) -

Fig. 1. A Screenshot of Schemer, the working name for our debug-
ging IDE. The graphical user interface handles the input and output of
Scheme execution. Similar to using Emacs with MIT-Scheme, it is not a
REPL. The user is free to place their cursor at any point in the document
and execute commands anywhere and in any order. Like building with
mud, the user has the freedom!

numberical value, and “drag” by pressing and panning the
pointer to the left (to decrease the value) or right (to increase
the value). The function will automatically compute based
on the new value.

Third, Schemer contains a method to explore expressions,
known as Expression Investigation. This allows a user to
slowly drill down into a procedure, to understand it’s
“trace,” without having to use breakpoints or mannual
investigations.

2 SCHEMER, THE IDE

The base level IDE (which is everything before the
debugging tools) includes two major components, a
”frontend” Mac app GUI, and a "backend” pipe to an MIT
Scheme REPL process.

The Mac app GUI gives the appearance of a straightforward
text field. It takes input from the keyboard and watches for
interactions (such as highlighting, cursor movement, and
execution commands). It displays the input from the user
and also sends the input to the the backend pipe. Finally,
the frontend receives a stream of data from the backend
pipe (which is the result of Scheme computation), and then
displays the result to the user. The GUI also provides syntax
highlighting: for example, comments are shown in a gray
font while code is in black.

https://github.com/kennethshawfriedman/Schemer

6.945: LARGE SCALE SYMBOLIC SYSTEMS, MIT, SPRING 2017

Schemer

(define pi 3.14159)

(define area-circle
(lambda (r)
(* pi (square r))))
(define x (area-circle 5))

(+ x 1)

Fig. 2. The Highlight to Evaluate tool in Schemer. Simply select the text
you want to execute, and you will see a preview of the value if you
were to execute the command. However, the command does not really
execute (from the user’s perspective). Once they let go, if they were to
just run the (+ x 1) command, there would be an error: because x is
unbound.

The backend pipe is constantly listening to the frontend,
waiting for data. Once data is received, it sends it to the
Scheme process that it owns. This backend pipe operates on
a seperate thread from the front end, so large computations
do not slow the interaction of the frontend. Once the
computation is complete, it sends the result back to the
frontend to be displayed as text to the user.

Both the Mac app GUI and the backend pipe are written
in Swift 3. Swift is an open source language (more
information, here: https://swift.org). The Schemer IDE
requires no dependencies to run other than the base level
OS version: which is MacOS 10.10. It would be possible to
port to other operating systems: the native graphic elements
of the app are the only thing preventing it from running
elsewhere.

3 MAJOR SUBSYSTEMS / DEBUGGING TOOLS

Next, we explain the major subsystems to the IDE.

3.1 Highlight to Evaluate

This features introduces a new concept to Scheme
programming: a preview execution. A Preview Execution is
temporary: It allows a user to see the result of their code,
and then immediately undo the fact that the code was
executed.

In our debugger, you can simply highlight a section
of code, and it will execute a preview. It will show you the
result of the execution while the text remains highlighted.
However when you deselect the text, any mutated state is
automatically removed: as if the execution never took place.

For example, consider the following:

Fig. 3. Figure 1.3 from Structure and Interpretation of Computer Pro-
grams: "a linear recursive process for computing 6!”. Our “expression
investigation” language is meant to automatically generate output like
the one depicted above, in order to help the programmer understand
the behavior of their programs.

;Value: x

(define x 10)
(+ x 1)

(+ x 3)

| (define x 5)

If the programmer selects the highlighted the 3rd and
4th lines of text above, they will see the value 11. However,
if they then highlight the final line, (+ x 3), they will see the
value 8, as the environment gets reset to the old value of x,
which was 5.

The behind-the-scenes implementation of this involves
using Scheme environments, duplicating the environment
and modifying its state, and then removing the new
environment when the Preview Execution is complete.

3.2 Expression Investigation

This feature allows the programmer to inspect the execution
of their program. A programmer may wish to see exactly
how an expression evolves into its final value, in a step-
by-step manner. In our GUI, the idea (though not yet
implemented) is that by highlighting an expression and
clicking expand, the programmer can see the expression
generated by substituting a functions arguments into the
function body. For example with (factorial 4), highlighting
the expression will show 24, but clicking the expand but-
ton would substitute 4 into the function body of factorial,
showing (x 4 (fact 3)). From here, the programmer could
further expand (fact 3) into (*+ 3 (fact 2)), and so forth.

Before trying to make any of this work in the GUI,
we needed to modify the underlying Scheme language
to support this. The idea would be to have a language
which automatically generates output like figure 1.3 in SICP,
reproduced below.

The above-described abilities are not yet complete, but
we attempted the following methods:

1) Re-define eval and apply to print out what is be-
ing evaluated or applied at every step. This gives
some insight into the program’s execution, but for
anything larger than the simplest program, it is too
verbose and doesn’t convey tangible meaning. This
is because it displays individual, low-level opera-
tions (the “leaves” of the execution tree), without
any higher-level information of who made those
calls.

2) Re-define eval and apply to accept a depth argu-
ment, which tracks how many more levels deep
the recursion should go. When the recursion has
reached a pre-determined level, it stops, making
eval and apply just return symbolic expressions
(either the expression it was given, or the procedure
and arguments it was given). This also involved

6.945: LARGE SCALE SYMBOLIC SYSTEMS, MIT, SPRING 2017

modifying eval and apply to return whatever ex-
pressions they were given, in the case when their ar-
guments are only partially-evaluated (and therefore
can’t actually be computed with). We then had the
REPL evaluate the programmer-entered expression
multiple times at different depth-limits.

When we tried this, we got results like the follow-

mg:

eval> (fact 3)

(fact 3)

(if (< n 2) 1 (¢ (fact (— n 1)) n))

1

(#[arity—dispatched —procedure 17 x]
(fact (— n 1)) n)

(#[arity—dispatched—procedure 17 x]
(fact (— n 1)) n)

1

(#[arity—dispatched—procedure 17 x]
(fact (— n 1)) n)

(#[arity—dispatched—procedure 17 x]
(fact (— n 1)) n)

3

6

This had the flaw that argument names would not
have their values substituted in (though we think
that this would be possible to fix). But perhaps
more importantly, this approach would only show
a single level of the call chain, substituting the body
of a procedure where it was being applied (as in
(* (fact (—n 1)) n)), but we would never get back
an expression showing multiple levels of execution
at once, like (x (fact 2) 3).

Next, we tried having every apply call return not
just a value, but the value as well as the expression
which generated that value (the procedure and ar-
guments). Subsequent apply calls would then have
to pull out the car of all the arguments in order
to get just the values to operate on, ignoring the
“history” that was being saved. The idea here is that
you could see a tree of your program’s execution,
with the final value as the root, from where you
could then expand different branches to see where
different pieces of the final value came from.

At a REPL, the programmer could type the follow-
ing and get the following result:

eval> (+ (1 () (2 ()))
(3 (#[arity—dispatched—procedure 15 +]

1 0) 2 0))

VR4

The above syntax says, apply “+” to the arguments
”1” and ”2” that both have no history. This returns
an answer of 3 with history showing what function
call generated that value.

For more complicated programs, this would show
a more interesting output. It might be difficult to
parse beyond a couple levels, so we would prob-
ably truncate the history beyond a certain depth,
leaving it to the programmer to decide which ones
to investigate further.

3

Unfortunately, we were only able to get this behav-
ior to work for the application of strict primitive
procedures, but not for compound procedures (this
should be quite feasible though, with a bit more
debugging which is still planned, by the group
members who are still working on this project).

While we mainly tested the above approaches using
simple functions like factorial, we see this language feature
being especially useful for debugging large systems. In fact,
this approach is overkill simple programs — it is easier to just
read the code, or evaluate some small examples in the REPL.
The real power of this language feature is in debugging
large systems. When you have long, complicated code, it
is difficult to keep track of what intermediate calculations
are being done, and how one function interacts with the rest
of your code. So, rather than having to trace it all out in your
head, or get your program to crash and then inspect the call
trace with the debugger, you would be able to just run the
program and then navigate through exactly how it got its
answer.

3.3 Draggable Manipulation

Any numerical literal value in Schemer becomes draggable
when the programmer hovers on that value in the source
code, indicated by a double-arrowed cursor. If the program-
mer subsequently clicks and drags left or right, the literal
value changes and the output (displayed on the right-hand-
side) changes along with it. Dragging left makes the value
decrease, and dragging right makes it increase, preserving
the original type (integer or floating point are the types
supported currently).

There is support for future extensions of this functional-
ity to other types as well. For example, strings or lists could
also be made draggable. The programmer would just have
to define what it means to increment and decrement those
types: add or remove one character from the string, add
repeated elements to the list, etc.

4 CONTRIBUTIONS

Here, we have demostrated a prototype, yet working, IDE
for Scheme that includes debugging tools to enhance the
programming experience. We introduced three major sub-
components and explained their features. In the future,
debugging will not be as hard as it was for Kernighan at
Bell Labs.

5 DOWNLOADABLE VERSION

Our project is open source and available for download here:
github.com/kennethshawfriedman/Schemer!

6 ACKNOWLEDGMENTS

The authors would like to thank Professor Sussman and
Manushaqge Muco for the adventures.

https://github.com/kennethshawfriedman/Schemer

	Motivation
	Design Goals
	Subsystems

	Schemer, the IDE
	Major Subsystems / Debugging Tools
	Highlight to Evaluate
	Expression Investigation
	Draggable Manipulation

	Contributions
	Downloadable Version
	Acknowledgments

